新闻中心

行业新闻

防爆电器设备安装施工要求

发布日期:2018-05-18 09:54:47 阅读:升羿防爆 点击次数:1330

防爆技术基础

石油采炼、储存、化工、医疗、军工及军事设施等许多工业企业,在生产、制造、运输和贮存的过程中,可能泄露或溢散出各种各样的易燃易爆气体、液体和各种粉尘及纤维。物质与空气混合后很容易形成爆炸危险的混合物,当混合物浓度达到一定浓度时,一旦出现火源即会引起爆炸和发生火灾等严重事故。

防爆设备的标志 
A爆炸性气体环境防爆设备标志
防爆公用标志——国际电工委员会(IEC)标志“Ex”;
欧洲电工委员会(CENELEC)标志“EEx”
防爆型式标志:隔爆型——“d”;
增安型——“e”;
正压型——“p”;
充砂型——“q”;
本质安全型——“i”,还细化为“ia”和“ib”级;
充油型——“o”;
无火花型——“n”;
浇封型——“m”;
特殊型——“s”
设备环境组别标志——I类、II类
气体组别标志——A、B、C
温度组别标志——T1至T6
B爆炸性粉尘环境防爆设备标志
防粉尘点燃公用标志——“DIP”
设备类型——“A”、“B”
设备等级——“20”、“21”、“22”
温度组别标志——T11至T13

防爆电气设备的类型
1隔爆型结构
隔爆型结构的电气设备再爆炸危险区域应用极为广泛,它不仅能防止爆炸火燃的传出,而且壳体又可承受一定的过压。它具有一个足够牢固的外壳,能经受内部爆炸气体混合物产生最大爆炸压力的1.5倍并不得小于3.5×105Pa的冲击,确保不变形或损坏,不产生永久变形,并具有一定结构间隙以使喷射出来的燃烧生成物通过一定的法兰长度冷却到低于外部爆炸性混合物的自燃温度。  
2
增安型结构
增安型机构在防爆电气设备上使用得也很广泛,如电动机、变压器、灯具和带有电感线圈的电气设备等。采用高质量的绝缘材料、降低温升、增大电气间隙、提高导线连接质量等,使其在最大限度内不致产生电火花、电弧或危险温度,或者采用有效的保护元件使其产生的火花、电弧或温度不能引燃爆炸性混合物,以达到防爆的目的。
3
正压型结构
正压结构的电气设备的防爆原理是:保证内部保护气体的压力高于周围以免爆炸性混合物进入外壳,或足量的保护气体通过外壳使内部爆炸性混合物的浓度降至爆炸下限以下。
4
充砂型结构
充砂型结构是在外壳内充填砂粒或其它规定特性的粉末材料,使之在规定的使用条件下,壳内产生的电弧或高温均不能点燃周围爆炸性气体环境的结构。
5
本质安全型结构
本质安全型结构仅适用于弱电流回路,如测试仪表、控制装置等小型电气设备上。无论是正常情况下,还是非正常情况下产生的电火花或危险温度,都不会使爆炸物质引爆,因此使安全性较高的防爆结构,其中电路或设备上的所有元件表面温度必须小于规定,以防止热效应引起的点燃。
6
防爆充油型结构
防爆充油型结构在使用上与传爆等级无关,适合于小型操作开关上。油浸型防爆结构的开关、控制器等设备,由于油的劣化或泄漏等原因,设备损坏很难维修,需要特别注意。  

7爆炸性粉尘环境的防爆结构
粉尘防爆电气设备是采用限制外壳最高表面温度和采用“尘密”或“防尘”外壳来限制粉尘进入,以防止可燃性粉尘点燃。该类设备将带电部件安装在有一定防护能力的外壳中,从而限制了粉尘进入,使引燃源与粉尘隔离来防止爆炸的产生。适用于20、21或22区粉尘危险场所。

1、危险场所的划分
危险场所是指危险环境出现或预期可能出现的数量达到足以要求对电气设备的结构、安装和使用采用专门措施的区域,根据爆炸性环境出现的频率和持续时间把危险场所划分为不同的区域。
A爆炸性粉尘环境危险区域的划分
根据可燃性粉尘/空气混合物出现的频率和持续时间及粉尘层的厚度进行分类,可分为20区、21区和22区。
20区:正常运行过程中可燃性粉尘连续出现或经常出现,其数量足以形成可燃性粉尘与空气混合物和/或可能形成无法控制和极厚的粉尘层的场所及容器内部。
21区:正常运行过程中,可能出现粉尘数量足以形成可燃性粉尘与空气混合物但未划入20区的场所。该区域包括与充入排放粉尘点直接相邻的场所、出现粉尘层和正常操作情况下可能产生可燃浓度的可燃性粉尘与空气混合物的场所。 
22区:异常条件下,可燃性粉尘云偶尔出现并且只是短时间存在、或可燃性粉尘偶尔堆积或可能存在粉尘层并且产生可燃性粉尘空气混合物的场所。如果不能保证排除可燃性粉尘堆积或粉尘层时,则应划分未21区。

B爆炸性气体环境的危险区域划分
根据可燃性气体出现的频率和持续时间将危险场所划分为0区、1区和2区。
0区:爆炸性气体环境连续出现或长时间存在的场所,危险环境存在的时间大于1000小时/年。
1区:在正常运行时,可能出现爆炸性气体环境的场所,危险环境存在的时间在10~1000小时/年之间。
2区:在正常运行时,不可能出现爆炸性气体环境,如果出现也时偶尔发生并且仅是短时间存在的场所,危险环境存在的时间少于10小时/年。 
2
气体组别与温度组别
防爆II类按照爆炸性气体混合物最大试验安全间隙或最小点燃电流比,将爆炸性气体分为A、B、C三个组别。温度组别是在爆炸性环境中使用的电气设备按其最高表面温度来划分的,最高表面温度时电气设备在规定范围内的最不利运行条件下工作时,可能引起周围爆炸性环境点燃的电气设备任何不见或电气设备的任何表面所达到的最高温度。爆炸性气体环境的温度组别分为T1至T6六组,在假定基础环境温度为40℃时,各组别的温度为

T1—450℃

T2—300℃

T3—200℃

T4—135℃

T5—100℃

T6—85℃ 
按照粉尘的点燃温度划分为T11、T12、T13三组,分别对应点燃温度为:

T11——大于270℃

T12——200℃

T13——150℃

3爆炸防护的基本原理
⑴提供能量的可燃性物质(释放源); 
⑵辅助燃烧的助燃剂(氧化剂); 
⑶可燃物质与助燃剂的均匀混合;
⑷混合物放在相对封闭的空间(包围体);
⑸有足够能量的点火源。
3.1可燃物浓度的抑制
爆炸强度与爆炸性混合物的浓度有密切关系,爆炸强度随浓度变化的关系近似于正办周期的正弦曲线,浓度国低或过高都不能发生爆炸,这两个点称为爆炸下限浓度和爆炸上限浓度。在爆炸下限浓度以下,由于可燃性物质的发热量已经低到不能维持火焰在混合物中传播所需要的最低温度,因而该混合物不能被点燃;若浓度逐渐增加而超过爆炸上限浓度时,虽然可燃物质增加,但助燃的氧气浓度低于化学当量值,不能满足混合物完全燃烧的需要,也不会发生爆炸。
3.2氧浓度的控制
在爆炸气氛中加入惰化介质时,一方面可以使爆炸气氛中氧组分被稀释,减少了可燃物质分子和氧分子作用的机会,也使可燃物组分同氧分子隔离,在它们之间形成以层不燃烧的屏障;当活化分子碰撞惰化介质粒子时会使活化分子失去活化能而不能反应。另一方面,若燃烧反应已经发生,产生的游离基将与惰化介质粒子发生作用,使其失去活性,导致燃烧连锁反映中断;同时,惰化介质还将大量吸收燃烧反应放出的热量,使热量不能聚积,燃烧反应不蔓延到其它可燃组分分子上去,对燃烧反映起到抑制作用。
3.3点火源的控制
温度对化学反映速度的影响特别显著,对一般反应来说,若初始浓度相等,温度每升高10℃反应速度大约加快2至4倍。因此,温度(也就是通常所指的点火源)使加快反应速度,引起爆炸事故的最初因素,控制点火源使防止爆炸事故的重要措施之一。
3.4减弱爆炸压力和冲击波
爆炸现象的重要特征之一就是爆炸物质爆炸时,产生的高温高压气体产物以极高的速度膨胀,使包围体内压力骤增,进而使包围体炸裂,形成冲击波,造成破坏力。为了防止或减弱因炸而使包围体内压力的骤增,应尽可能地不使包围体相对封闭。